THE STUDY OF THE INTERACTION BETWEEN GEMINAL CHLORINE AND OXYGEN ATOMS IN ALKOXYCHLOROSILANES BY NQR SPECTROSCOPY

J.POLA^a, V.P.FESHIN^b, M.G.VORONKOV^b, L.S.ROMANENKO^b and V.CHVALOVSKÝ^a

^aInstitute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6 - Suchdol and ^bInstitute of Organic Chemistry, Siberian Div. of Academy of Sciences USSR, 664033 Irkutsk, USSR

Received May 17th, 1976

The measurement and the discussion of 35 Cl-NQR spectra of some alkoxychlorosilanes Cl_n . $(CH_3)_{3-n}$ SiOR and some chlorosilanes is presented. The 35 Cl-NQR frequencies of these compounds are consistent with the usual frequency changes observed for compounds containing the Cl-Y-M group, when M is varied. The transmission of polar effects through the silicon atom in alkoxychlorosilanes depends on the group R.

The study of ³⁵Cl-NQR spectra of compounds with Cl—C—M bonding, where M = C, Si, Ge, Sn, F, O, N, *etc.*, has revealed^{1,2}, that the ³⁵Cl-NQR frequency in these compounds is, as a rule, higher than that of their carbon analogues when atom M disposes of vacant *d*-orbitals, but it is lower when atom M disposes of *n* orbitals. It was also recognized that ³⁵Cl-NQR frequency in the compounds CIP(M)RR' (M = O, S, Se) gradually increases²⁻⁴ on going from O to Se, in spite of the decrease in electronegativity of the atom M. The interpretation of these values of ³⁵Cl-NQR frequency, which are not in harmony with the electronegativity of atoms M do not seem to be convincing². General character of-from the standpoint of the electronegativity of M atom-anomalous values of ³⁵Cl-NQR frequency⁴⁻⁹ could speak for the same mechanism of the interaction between M and Cl atoms. This interaction can be assumed to be through space interaction between M and Cl atoms that operates in the opposite direction compared to the interaction between these atoms through σ bonds.

The regularity in the NQR frequency changes, when atom M being varied, is believed to hold for other compounds with X—Y—M bonding, where X stands for an indicative atom and Y is any atom separating both X and M geminal atoms. To justify the above hypothesis and to examine the mechanism of the interaction between geminal M and X atoms, the ³⁵Cl-NQR spectra of some chlorosilanes and alkoxychlorosilanes have been recorded in this work and their discussion is presented.

EXPERIMENTAL

³⁵Cl-NQR spectra of chlorosilanes and alkoxychlorosilanes were measured as reported earlier⁹. Preparation of the compounds will be described in a subsequent paper¹⁰.

RESULTS AND DISCUSSION

The ³⁵Cl-NQR spectra of the chlorine atoms directly bonded to the silicon consist in case of alkoxymonochlorosilanes of one signal, while the spectra of alkoxydichlorosilanes have different multiplicity. Thus the NQR spectrum of Cl₂Si(CH₃)OC₂H₅ has singlet character, and the spectrum of the other compounds of the type Cl_2Si . .(CH₃)OR are of dublet character. The elementary crystal cell of these compounds contains likely one molecule. Quadruplet character of NQR spectra of Cl₂Si. $[OC(CH_3)_3]$, speaks likely for two molecules in the elementary crystal cell. If one assumes that splitting of the signals in 35 Cl-NQR spectra of Cl₂Si[OC(CH₃)₃]₂ molecule is the same as in the other alkoxydichlorosilanes, the two, close lines of the low frequency in the quadruplet spectra of this compounds belong likely to the chlorine atoms of one molecule, and another two lines of the high frequency belong to the second molecule in the elementary crystall cell. ³⁵Cl-NQR spectra of the alkoxytrichlorosilanes Cl₃SiOR with $R = C_2H_5$, CH(CH₃)₂ consist of the three lines of about the same intensity. The two low frequency lines are close to one another, and the third, high frequency line is separated. Splitting of all the three lines is approximately unique when $R = CH_2Si(CH_3)_3$, the NQR spectrum has singlet character when $R = CH_2CCl_3$. Splitting between the lines of the chlorine atom belonging to the Si-Cl bonds in multiplet NQR spectrum of Cl₃SiO(CH₂)₃Cl is whithin crystallographic limits. The NQR spectra of alkoxytrichlorosilanes do not show therefore specific features when compared to the NQR spectra of other trichlorosilanes.

Small splitting in the NQR spectra of some alkoxytrichlorosilanes indicates about the same σ electronic environment of the chlorine atom in these molecules, and also about the same extent of the interaction of the alkoxy substituents with all three chlorine atoms bonded to the silicon.

The ³⁵Cl-NQR frequency of the chlorosilanes RR'R"SiCl, depends linearly^{4,6,8,9} on the $\sum \sigma_{R,R',R''}^*$ value (Fig. 1, line a). This type of the correlation equation including all the known ³⁵Cl-NQR frequencies ($v^{77} = 16.567 + 0.416 \sum \sigma^*$) differs only little from the equation calculated earlier⁶. The ³⁵Cl-NQR frequency of all the alkoxymonochloro- and alkoxydichlorosilanes deviates from that correlation line in the low-frequency region (Fig. 1). Similar deviations from the $v^{77} vs \sum \sigma_{R,R',R''}^*$ plot for RR'R"CCl compounds show also the v^{77} frequencies of the compounds containing the fragment Cl—C—OR (ref.^{4,8}).

Anomalous values of the ³⁵Cl-NQR frequency of the compounds ClCH₂M where M = F, OR, NR₂, *etc.* have been explained in several different ways; by interaction of n_M orbital with the antibonding C—Cl orbital (*p*- σ conjugation)¹¹⁻¹³ or by the

Fig. 1

The ³⁵Cl-NQR Frequency (ν^{77}) vs $\sum \sigma^*_{\mathbf{R},\mathbf{R}',\mathbf{R}''}$ Plot for ClSiRR'R"

R, R', R'' = Cl, Cl, Br(1); Cl, Cl, Cl(2); Cl, Cl, CCl₃(3); Cl, Cl, CHCl₂(4); Cl, Cl, CH₂Cl(5); Cl, Cl, CH₂CH₂CN(6); Cl, Cl, C₆H₅(7); Cl, Cl, H(8); Cl. Cl, CH=CH₂(9); Cl, Cl, CH₂CH₂Cl Cl, Cl, CH₂CH₂CN(6); Cl, Cl, C₆H₅(7); Cl, Cl, H(8); Cl. Cl, CH==CH₂(9); Cl, Cl, CH₂CH₂Cl (10); Cl, CCl₃, C₆H₅(11); Cl, Cl, CH₂CH₂Br(12); Cl, Cl, CH₂CH₂C₆H₅(13); Cl, Cl, CH₃(14); Cl, Cl, (CH₂)₃Br(15); Cl, Cl, C₅H₂(16); Cl, Cl, (CH₂)₃Cl(17); Cl, Cl, C₄H₉(18); Cl, Cl, C₃H₇(19); Cl, Cl, C₂H₅(20); Cl, Cl, CH(CH₃)₂(21); Cl, C₆H₅, CHCl₂(22); Cl, CHCl₂, CH₃(23); Cl, CH₂Cl, C₆H₅(24); Cl, H, H(25); Cl, CH₂Cl, CH₃(26); Cl, CH₃, CH₂CH₂CN(27); Cl, CH₂CH₂CF₃, CH₂CH₂CF₃(28); Cl, C₆H₅, CH₃(29); Cl, H, CH₃(30); Cl, H, C₂H₅(31); Cl, CH₂CH=CH₂, CH₂CH=CH₂(32); Cl, CH₂C₆H₅, CH₃(33); Cl, CH=CH₂, CH₃(34); Cl, CH₂CH₂Cl, C₂H₅(35); Cl, CH₂CH₂CF₃, CH₃(36); Cl, (CH₂)₃CN, CH₃(37); Cl, CH₃, CH₃(38); Cl, CH₂CH₂C₆H₅, C₂H₅(39); Cl, CH₃, C₂H₅(40); Cl, (CH₂)₃Cl, CH₃(41); Cl, CH₃, C₃H₇(42); Cl, C₂H₅, C₂H₅(43); Cl, (CH₂)₃Cl, C₂H₅(44); Cl, C₄H₉, C₄H₉(45); Cl, CH(CH₃)₂, CH(CH₃)₂(36); CH₂Cl, CH₃, CH₃(47); CH₂CF₃, CH₂CF₃, CH₂CF₃, CH₂CF₃(48); H, CH₃, CH₃(49); CH=CH₂, CH₃, CH₃(50); CH₂CH₂CF₃, CH₃, CH₃(51); CH₃, CH₃, CH₃(52); (CH₂)₃Cl, CH₃, CH₃(53); C₂H₅, C₂H₅, C₂H₅(54); Cl, Cl, OCH₃(55); Cl, Cl, OC₂H₅(56); Cl, Cl, OC₃H₇(57); Cl, Cl, OCH(CH₃)₂ (58); Cl, Cl, OC₄H₀(59); Cl, OCH₃, OCH₃(60); Cl, OC(CH₃)₃, OC(CH₃)₃(61); Cl, OC₂H₅, OC₂H₅(62); Cl, CH₃, OCH(CH₃)₂(63); Cl, CH₃, OC₂H₅(64); OCH₃, OCH₃, OCH₃(65); OC₂H₅, OC₂H₅, OC₂H₅(66); CH₃, CH₃, OC(CH₃)₃(67); CH₃, CH₃, OCH(CH₃)₂(68); CH₃CH₃, OC₂H₅(69).

The line σ was constructed according the equation $v^{77} = 16.567 + 0.416 \sum \sigma^*$, valid for compounds 1-54. The lines *b*, *c*, and *d* were constructed for compounds with R=OCH₃, OC₂H₅, and OCH(CH₃)₂ respectively. The data used in these correlations are from this work and papers^{4,6,8,9}.

3774

No	R	R′	R″	v ⁷⁷ , MHz	s/n^a
1	CH ₃	CH ₃	OC ₂ H ₅	15.860	5
2	CH ₃	CH ₃	OCH(CH ₃) ₂	16.004	6
3	CH ₃	CH ₃	OC(CH ₃) ₃	16.370	2
4	CH ₃	CH ₃	OCH ₂ CHCl ₂	36·336 36·181 35·932 16·299	4 6 1·5 2
5	CH ₃	OC_2H_5	OC ₂ H ₅	16·454	3
6	Cl	CH ₃	OC ₂ H ₅	17.523	20
7	Cl	CH ₃	OCH(CH ₃) ₂	17.682	10
		U	0.2	17.514	10
8	Cl	CH ₃	OCH ₂ CCl ₃	38·848 38·662 38·514 17·868 17·750	10 11 10 4 4
9	Cl	CH ₃	OCH ₂ Si(CH ₃) ₃	17·624 17·440	5 5
10	Cl	OC(CH ₃) ₃	OC(CH ₃) ₃	18·827 18·551 18·196	4 4 4
11	Cl	Cl	OC ₂ H ₅	18-138 19-921 19-353 19-298	4 4 5 4
12	Cl	Cl	OCH(CH ₃) ₂	19·745 19·126 18·945	25 23 25
13	Cl	Cl .	O(CH ₂) ₃ Cl	33·588 33·475 19·750 19·739 19·450	5 5 3 6 2
				19·360 19·232 19·228 19·180	3 2 6

TABLE I		
The ³⁵ Cl-NQR	Frequency (v^{77}) of the Com	pounds RR'R"SiCl

Collection Czechoslov. Chem. Commun. [Vol. 41] [1976]

Table I

(Continued)

 No	R	R′	R″	v^{77} ,MHz	s/n ^a
 14	Cl	Cl	OCH ₂ Si(CH ₂) ₂	19.604	8
				19.348	10
				19.000	3
15	Cl	Cl	OCH ₂ CCl ₃	39.618	6
			2 3	38.346	2
				19.168	10
16	Cl	CH(CH ₃) ₂	$CH(CH_3)_2$	17.756	10
				17.573	5
17	Cl	CH ₃	(CH ₂) ₃ CN	17.408	8
		5	. 2.5	17.338	8

^a Signal to noise ratio.

three-center bond¹⁴. The mechanism of the interaction between Cl and M atoms suggesting the participation of the unshared electron pair on the atom M in organosilicon molecules with Cl—Si—OR bonding does not seem to be in harmony with generally accepted ideas on the $(p - d)_{\pi}$ conjugation in Si—O bond. Thus participation of the n_0 -orbital in $(p - d)_{\pi}$ bonding would prevent its participation in $p - \sigma$ conjugation or three-center bond. But, in spite of the considered inclusion of n_0 orbitals of the compounds $\text{ClSi}(\text{CH}_3)_2[\text{OSi}(\text{CH}_3)_2]_n\text{OSi}(\text{CH}_3)_2\text{Cl}$ in $(p - d)_{\pi}$ interaction, from the NQR spectra of these compounds it follows that their v^{77} frequency is lower than that of appropriate compounds $\text{ClSi}(\text{CH}_3)_2\text{R}$ where R is not an alkoxy group. (For n = 0, $v^{77} = 16.33$ MHz; n = 1, $v^{77} = 16.28$ MHz; (ref.^{4,5,14}). For R = CH₃, $v^{77} = 16.506$ MHz; R = (CH₂)₃Cl, $v^{77} = 16.68$ MHz (ref.^{4,5,14})).

The electrostatic mechanism of the interaction between geminal atoms in Cl—C—M molecules proposed earlier² can however explain unusual frequency values also in Cl—Si—M molecules, even if n_0 orbitals (M = OR) participate in $(p - d)_{\pi}$ bonding. Significantly smaller deviations of NQR frequences for the alkoxychlorosilanes from the linear correlation $v^{77} = v_0 + \rho \sum \sigma_{R,R',R''}^{*}$ for the compounds RR'R''SiCl, compared to the deviations of their carbon analogue, alkoxychloromethanes from the same type of correlation for RR'R''CCl, can be, in harmony with this electrostatic mechanism, explained by the greater size of the silicon compared to the carbon. This mechanism can be also used to explain an increase in the NQR frequency of the compounds RR'P(M)Cl when going from M = 0 to M = S or Se, *i.e.* when the electronegativity of the atom M decreases^{15,16}.

Collection Czechoslov. Chem. Commun. [Vol. 41] [1976]

The $(p - d)_{\pi}$ conjugation of an unshared electron pair on the oxygen atom with d-orbitals of the silicon atom might be suggested to cause an increase of the electron density on silicon and a decrease of the electronegativity of oxygen. This results in an increase of the p_{σ} -electron density of the chlorine atom and a decrease of the NQR frequency. Based on the fact, that ability of the oxygen to participate $in(p - d)_{\pi}$ conjugation with d orbitals of the phosphorus is much higher than that of sulphur or selenium^{3,17}, this mechanism was proposed to explain lower ³⁵Cl-NQR frequencies for compounds, of the series RR'P(O)Cl as compared to those of RR'P(S)Cl (ref.^{3,17}) and RR'P(Se)Cl series³. However, anomalously low NQR frequencies are observed for phosphorous compounds and alkoxychlorosilanes and organic compounds as well. The mechanism of the effect of the oxygen or another heteroatom on the chlorine could be in all cases the same, and if so, one can not assume $(p - d)_{\pi}$ conjugation to be the main factor responsible for anomalously low NQR frequencies in alkoxy chlorosilanes, because such interaction is absent in organic molecules.

Turning now to the correlation $v^{77} = f(\sum \sigma^*)$ for RR'R"SiCl (Fig. 1, line *a*) one can see that most of the points corresponding to alkoxytrichlorosilanes deviate from the correlation line only little toward the low frequency region. The point for Cl₃SiO. .CH₃ is, however, located above the correlation line⁷. This is not in accordance with the above mentioned general regularity of the dependence of v^{77} value on the nature of the atom M in the compounds Cl—Y—M. This unusual frequency for Cl₃SiOCH₃can not be fortuitous and should not be the consequence of some specific interaction proper to this molecule which is absent in other Cl—Si—OR compounds, because of linear increase in the NQR frequency of the compounds $Cl_nSi(OCH_3)_{4-n}$ with increasing n or $\sum \sigma^*$ (Fig. 1, line *b*). The same type of linear dependance holds also for the other compounds of type $Cl_nSi(OR)_{4-n}$ (Fig. 1, line *c* and *d*). Moreover, transmission of the polar effect of the group R depends significantly on the character of the group. (An increase in the polarizability of groups R decreases transmission of the polar effect). The unusually high NQR frequency of Cl₃SiOCH₃ is thus consistent with the higher transmittance of polar effects in Cl_nSi(OR)_{4-n} relative to RR'R"SiCl.

Based on these data general regularity between ³⁵Cl-NQR frequency and the nature of the M atom in the compounds Cl—Y—M is influenced by transmission of inductive effects through the atom Y, and is obligatory fulfilled only when this transmission is the same or very similar for various Y and M (ref.¹⁸). This is the case with the compounds ClP(O)RR' and ClP(S)RR' (ref.²), and also XCOCl (X = OR, NR₂ or X \neq \neq OR, NR₂) (ref.²). The way how, different polar effect transmission makes for deviations from general regularity was demonstrated with ClCH₂MRR'R" compounds¹⁸ (M = C, Si).

3776

REFERENCES

- Voronkov M. G., Feshin V. P., Chernyshev E. A., Savushkina V. I., Nikitin P. A., Kotikov V. A.: Dokl. Akad. Nauk SSSR 212, 395 (1973).
- Voronkov M. G., Feshin V. P., Nikitin P. A., Berestennikov N. I., in Proceedings of the Second International Symposium on Nuclear Quadrupole Resonance Spectroscopy. Viareggio, Italy 1973.
- 3. Nuretdinov I. A., Osokin D. Ya., Safin I. A.: Izv. Akad. Nauk SSSR 1975, 327.
- 4. Semin G. K., Babushkina T. A., Yakobson G. G.: Primenenie Jadernogo Kvadrupolnogo Rezonansa v Khimii. Khimia, Leningrad 1972.
- 5. Biryukov I. P., Voronkov M. G., Safin I. A.: Tablicy Castot Jadernogo Kvadrupolnogo Resonanca. Khimia, Leningrad 1968.
- 6. Biryukov I. P., Voronkov M. G., Safin I. A.: Dokl. Akad. Nauk SSSR 165, 857 (1965).
- 7. Biryukov I. P., Voronkov M. G., Lukevic E. Ya., Safin I. A.: Teor. Eksp. Khim. 6, 566 (1970).
- 8. Voronkov M. G., Feshin V. P., in the book: Determination of Organic Structure by Physical Methods. Academic Press, N. Y. 1972.
- 9. Feshin V. P., Voronkov M. G., Reichsfeld V. O., Romanenko L. S.: Zh. Obshch. Khim. 44, 126 (1974).
- 10. Jakoubková M., Papoušková Z., Pola J.: This Journal, in press.
- 11. Lucken E. A. C.: J. Chem. Soc. 1959, 2954.
- 12. Ardalan Z., Lucken E. A. C.: Helv. Chim. Acta 56, 1715, 1724 (1973).
- 13. Ardalan Z., Lucken E. A. R., Masson S.: Helv. Chim. Acta 56, 1720 (1973).
- Voronkov M. G., Feshin V. P., Nikolskaya A. N., Nikitin P. A., Levanova E. P., Berestennikov N. I., Volkov A. N.: Dokl. Akad. Nauk SSSR 212, 618 (1973).
- 15. Biryukov I. P., Voronkov M. G., Safin I. A.: Izv. Akad. Nauk Latv. SSR, 1966, 638.
- 16. Pauling L.: Obshchaya Khimia. Mir, Moscow 1974.
- 17. Hart R. M., Whitehead M. A.: J. Chem. Soc. A 1971, 1738.
- Voronkov M. G., Feshin V. P., Romanenko L. S., Pola J., Chvalovský V.: This Journal 41, 2718 (1976).